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1. INTRODUCTION

In this paper we construct and analyse one-sided approximation
operators for functions of bounded variation on [0, 1]. The basic idea of
the construction consists in connecting the classical approach for one-sided
approximation used by Freud [IJ and Nevai [5] with a special problem of
Hermite interpolation. To get characterization and saturation for one-sided
Lp-approximation, we will use the well known r-modulus which is the
appropriate modulus for measuring smoothness of functions in one-sided
approximation theory (cf. Popov [6] and his references). This paper
includes also some brief remarks concerning the weighted L p ­

approximation properties of the operators. In this context, smoothness of a
function f will be measured by the properties of some special maximal
functions of f

2. NOTATION

Let BV[O, 1] be the space of all functions f of bounded variation on
[0, 1] canonically extended to IR by defining f( x) := f(0), x < 0, and
f(x) := f( 1), x> 1. For 1:f:; P < 00 we will denote by Lp[O, 1] the class of
measurable functions f on [0, 1] with If Ip Lebesgue integrable and by
Ii ·11 p the usual Lp-norm with respect to [0, 1]. Finally, let CEO, 1] be the
space of all continuous functions on [0, 1] and II· II ex. the corresponding
maximum norm.

* This paper is an extract of the author's thesis written at the FernUniversitat of Hagen
under the direction of Prof. Dr. F. Locher (FernUniv. of Hagen) and Prof. Dr. M. W. Muller
(University of Dortmund).
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3. CONSTRUCTION OF THE OPERATORS

x?: t.

if x < t

if

We apply the classical strategy of generating one-sided approximations
used by Freud [1 J and Nevai [5]. So we are first interested in constructing
simple but effective one-sided approximations for the so-called step
functions Go: [R2 ~ {O, l},

Go(x,t):={x-t)~:={~

For this purpose we generate uniquely determined Hermite interpolation
polynomials hn(x, t) and H,,(x, t) of maximal degree 2n in x which are
defined by

h~i)(t - 1, t) = H~i)(t - 1, t) = 0,

hn(t, t) = 0,

Hn(t, t) = 1,

hn(t + 1, t) = Hn(t + 1, t) = 1,

h;,i)(t + 1, t) = H~i)(t + 1, t) = 0,

i=O, ..., n-1,

i= 1, ..., n-1.

(3.1 )

(It is assumed that t E IR is fixed and the differentiation is taken with respect
to x. For sake of brevity we will sometimes identify a function f with its
"value" f(x), as done above in case of hn and H".)

LEMMA 3.1. Let n EN and t E [0, 1J be given. Then the algebraic
polynomials h,,(x, t) and HAx, t) of maximal degree 2n in x satisfy the
inequality

hll (x, t):;;; (x - t)~ :;;; Hn{x, t), XE [0, 1J, (3.2)

and the identity

XE [0,1]. (3.3 )

Moreover, for a fixed x E [0, 1], hn(x, t) and Hn(x, t) are continuous
functions in t.

Proof The lemma may be easily proved by explicit calculation of the
functions hn and H ll . We get

hll (x, t) = an r (1- (~- t)2)"-1 d~ - ~{l- (x - t)2)11,
1-1

HAx, t)=a" r (l-(~-tft-l d~+!(1-(x-t)2t,
1-1
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ONE-SIDED APPROXIMATION 1'"1 <

f 1

To get (3.2) we additionally have to show that h,,(x, t) land analogously
H,.(x, t)) has only one local extremum in (t - 1, t + 1)::J (0, 1) as a function
of x. This follows immediately by the equivalence

h~(x, t)=O for x E (t - 1, t + 1)

if and only if x=t-a"n- 1
•

To do the final step in constructing the operators we need a few
definitions. For f E BV[O, 1] and °~ x < y ~ 1 let V~(f) be the total
variation of f over [x, y] and VAx):= Vo(f), x E [0, 1], the so-called
variation function of f Moreover, we define

and

for x E [0, 1]. As f + and f- are non-decreasing functions we get the
following theorem.

THEOREM 3.1. Let n EN and f E BV[O, 1] be given. Then the operators

qJ" and €/J" defined on BV[O. 1] by

qJ,,(f)(x) :=f(O) + J: h,.(x, t) df+(t) - J: H,,(x, t) df-(t),

<P,,(f)(x) := f(O) + J: H,,(x, t) d.f+(t) - I: h,,(x, t) df-(t),

have the following properties:

(a) qJ,,(f), €/J,.(f) E ll2,.,

(b)

(3.4 )

XE [0,1], (3.5)

(c) For XE [0,1] the one-sided approximation error given by qJ" and
C/J" has the representation
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Proof Since (a) and (c) are easy consequences of Lemma 3.1 and the
linearity of the Riemann-Stieltjes integral (both in integrand and
integrator) we only have to prove (b). Because of Lemma 3.1 we get using
the monotonicity of the Riemann-Stieltjes integral in case of monotone
integrator functions (x E [0, 1]),

f(x)=f(O)+ rdf+(t)-rdf-(t)
o 0

~ f(O) +f hn(x, t) df+(t) - ( Hn(x, t) df-(t)

= CfJAf)(x).

Analogously we can show f(x)~cPn(f)(x), XE [0,1].

Remarks. (1) The operators CfJn and cPn are non-linear since the only
linear one-sided approximation operator is the identity operator.

(2) It can be easily shown that the operators are equicontinuous in
the sense of Holder as functions from the Banach space BV[O, 1] with the
variation norm into C[O, 1] with the maximum norm. For if we define the
variation norm by Ilqllv:=/q(O)1 + V6(q), qEBV[O,l], and choose
f, g E BV[O, 1] arbitrarily we get by means of the inequalities Ihn(x, t)1 ~ 2
and IHn(x, t)1 ~ 2, x, t E [0, 1],

II CfJn(f) - CfJll(g) II 00 ~ If(O) - g(O)1 + 2VA(f+ - g+) + 2VA(f- - g-)

~ /(f - g)(O)1 + 2VA(f - g) + 2VA(Vf - Vg )

~4I1f-gllv

and analogously

4. LOCAL AND GLOBAL ApPROXIMATION PROPERTIES

To get a first impression of the approximation properties of the
operators we start with a local approximation theorem. For this reason we
define f(x +) := limh _ 0+ f(x + h) and f(x - ) := limh _ 0+ f(x - h) and
remember that forfEBV[O,l] and xE[O,l] we have V;~(f)=

/f(x+)-f(x)1 + If(x)-f(x-)I (cf. Riesz/Sz.-Nagy [7,p.14]).
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THEOREM 4.1. Let fE BV[O, 1] be given. Then we hat1e for x E [0,1],

lim (cPn(f)-qJn(f))(x)= If(x+)- f(x)1 + If(x)- f(x- )1. (4.1)

Moreover, iff is non-increasing or non-decreasing at x, i.e., if

min{f(x- ),f(x+)} ~f(x) ~ max{f(x- ),f(x+}},

we have

lim qJn(f)(x) = min{f(x- ),f(x+)},
11---+ 00

lim cPn(f)(x) = max {f(x- ),f(x+)}.
n -+ oc·

(4.2)

Proof Since (4.2) follows immediately from (3.5), (4.1), and the local
monotonicity of J, we only have to prove (4.1). Using the inequality
(1 - (x - t)2)" ~ e-n(x - 1)1, X, t E [0, 1], and the assumed constant extension
of f over [0. 1] we get the following estimates:

cPn(f)(x) - qJn(f)(x) ~r+ n-' (t - (x - t)2)" dV/(t)
x_n- 1

Now (4.1) follows for n -+ 00.

After this local result we are now interested in the more global
approximation properties of the operators. For this reason we have to
introduce the well known r-modulus of first order of f with respect to p.
Using the local w-modulus (f bounded and measurable, x E [0, 1], Gi > 0)

it is defined by

!l.p(J, b) := Ilwl(J, x, Gi)11 p' 1~ P <X,,

rl.x(J, 8) :=sup{wj(J, x, 8): XE [0, 1]} =wU; (i).
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LEMMA 4.1. Let f E BV[O, 1] and 1~ p ~ 00 be given. Then we have

(a)

(b)

(c)

'I,p(f, <5) ~'l.p(f, <5'), 0 < <5 ~ <5',

'I,p(f, n<5) ~ nr I,P(f, <5), 0 < <5, n EN,

f is constant on [0, 1] if and only if

(<5 --> 0).

(4.3 )

(4.4 )

(4.5)

Proof For (a) and (b) see Popov [6] and his references. Moreover, for
p = 00 equivalence (c) is well known, too (for example see Gorlich/Nessel
[2, Remark 4.3 J). Since the ,-modulus vanishes for constant functions one
implication of (c) is evident even in case 1~ p < 00. To get the opposite
implication we remember the inequality OJ I,p(f, <5) ~'l,P(f, fJ) where
OJ1.p(f, fJ) is the usual OJ-modulus of first order with respect to L p (cf.
Popov [6J). Now the small a-condition for the ,-modulus gives
OJ l.p(f, fJ) = o( fJ), fJ --> 0, which implies that f is constant almost everywhere
on [0, 1] (see again GorlichjNessel [2J). The final step of showing thatfis
constant everywhere on [0, 1] is easily done by contradiction (f = C a.e.
on [0, 1] and f(xo) = Co =1= C for some XoE [0, 1] implies, I,P(f, fJ) ~ MfJ,
M> 0; for details see [3, 4]).

We are now able to formulate a complete characterization and
saturation theorem for the operators qJ" and fl>".

THEOREM 4.2. Let f E BV[O, 1J, 1~ p ~ 00, and n EN, n ~ 2, be given.
Then there exist non-negative real numbers K 1 and K2 (independent off, p,
and n), such that

(i) 'l,p(Vf,n-I/2)~Klllfl>,,(f)-qJ,,(f)llp, (4.6)

(ii) 11fl>,,(f) - qJn(f)ll p~ K 2'I,p(Vf , n- I/2). (4.7)

In particular we have for 0 < a ~ 1,

(n --> 00),

if and only if

(<5 --> 0).

Finally the operators are saturated of order n - 1
/
2, i.e.,

(n --> 00)
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if and only if

17<:'
oJ

(6---+0)

and

(n ---+ OC; .1

if and oniy (ff is constant on [0, 1].

Proof Since with Lemma 4.1 the characterization and saturatior.
statements follow easily from (i) and (ii) by standard analysis, we only
have to prove the two inequalities.

(i) Since (1 - lln).o? 1j2e, n? 2, we have for 1 ~ p < OC;

~ (1 I {f '2e ( 1- ~).o dVA t)rdX)\ lin

o Ix-II";t/-L. \ n )

~2e(( {( (1-(X-t)2)ll dVj (l)r dxrp
= 2e IleJit/(f) - <tJ,,(f) II p'

(ii) Let xE[O,lJ be given and l~p<iXj. Defining [fi]:=
max {m E Z Im ~ fi} we introduce the equidistant partition 0= to < t 1 <
... <tLi;;]+l=l of [0, 1J with l;:=i·([fiJ+l)-l, i=O, .." [fiJ+1.
Assuming x E [t k> tk + I] we get, by using the so-called upper Riemann­
Stieltjes sum with respect to the chosen partition,

eJi,,(f)(x) - <tJ.o(f)(x) ~re -1l(X- I)' dVf(t)
o

k-l

~ L e-.o(x-r,+il'V:;+I(f)
i=O

[,,;;]

+ " e- Il(X-I,I'V1,-I(f)L t/ ,-

i=k+ 1
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The proof for p = 00 follows analogously by taking the supremum instead
of the integrals.

Remark. For fE BV[O, IJ the saturation condition 'l.p( VI' 15) = O(b),
(15 --+ 0), is equivalent to 'l.p(f, b) = O(b), (b --+ 0). For a detailed discussion
of the connection between the ,-modulus of f and the ,-modulus of the
variation function off see [4].

5. WEIGHTED Lp-ApPROXIMATION PROPERTIES

Let BV(IR) be the space of all real valued functions of bounded variation
on IR. For fEB V( IR) and 0 ~ cx ~ 1 let f:' * denote the modified maximal
function of f,

** ._ If(x+h)-f(x-h)1
fIX (x).- sup (2h)" '

h>O
XE IR. (5.1 )

Since in this paper we only consider functions f E BV(IR) the modified
maximal functions may be interpreted as a special case of the maximal
functions mentioned by Stein and Weiss [8, p. 85, Remark 5.6J and others
especially in connection with relative differentiation of measures; to see this
we note that each f E BV(IR) induces a well-defined Borel measure, the
so-called Lebesgue-Stieltjes measure corresponding to f Moreover, f:'*(x)
can be interpreted as a local Lipschitz constant off of order cx. Since f is of
bounded variation the central derivates off exist almost everywhere on ~,

i.e.,f:'*(x) is finite for almost every XE IR. More precisely,f:'*(x) is finite if
and only if If(x+h)-f(x-h)I=0((2h)"), h--+O, i.e., the modified
maximal functions are sensitive measures of the local divergence or
convergence order of the central derivates off

LEMMA 5.1. Let f E BV(IR) be non-decreasing and 0 ~ IX ~ 1. Then there
exists a real constant C> 0 (independent off and cx) such that for all x E IR

(5.2)
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Proof Let XEIR and nEN be given and define !i:=x+in-1'2, iE7L.
Then we have

r" n,,/2e -n(x-t)2 df(t)
-tX,

i-I

~lim sup L n"/2e - j2(f(tj +d-f(t))
lj--;N j=O

o
+ lim sup L n~12e-j2(f(tJ -fUj - d)

I~i~~ j=i+ 1

1- I

~ lim L e-jz(2(j+ 1»)"
ii-;r;] j=O

f( x + (j + 1)/~ ) - f( x - (j + 1)/;-;')
x:.....:..---=----:..:.....!..-...:..-....:..-~---.:.::---..::.-!----:-

(2(j+ l)/~)"
o

+ lim L e-j \2(lil+l»"
i~i;;~ j=l+ 1

xf(x + (Iii + 1)/~) - I(x- (I il + 1)/J~)

(2(1J1 + 0/.;;;)"

~(4'j~O e-jz(j+ l))f:*(X).

Remark. In case IX = 1 it follows from Lemma 5.1 that

I
rX> ~ , I

~~~ Lao In e-n(X-t)-g(t) dt ~ c' g*(x)

for gEL[(IR), xEIR, and g* the classical Hardy-Littlewood maximal
function of g,

1 j'x + h
g*(x) := sup 21 Ig(t)1 dt

h>O 1 x-h

(ef. Wheeden/Zygmund [9, pp.104, 156]). Moreover, an easy calculation
yields

f~*(x) ~ (f' )*(x), X E IR,

in case of f being absolutely continuous on IR. This inequality shows the
essential difference between the two maximal functions: while the Hardy-
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Littlewood maximal function off is a gauge of the size of the averages of
If I around x, the modified maximal function is a measure of the size of the
averages of the absolute derivates of f around x,

Now we are able to give a sufficient condition for a prescribed weighted
approximation order in terms of the integration properties of the modified
maximal functions.

THEOREM 5.2. Let f E BV[O, 1], 1<; P < 00, and 0<; r1 <; 1 be given.
Moreover, let g E Lp[O, 1] be a non-negative weight function. If the integral

exists and is finite, then we have for n --+ 00,

Proof For given nEN we get using Lemma 5.1

na
/
2 Ii( if',,(f) - CJ?,,(f)) gil P

(I I( I )P )IIP<; 0 fa n ai2e-"(X-I)2 dVf(t) (g(x))p dx

<; CII( Vr):*· gllp.

(Note that in this theorem f and Vf are assumed to be extended on IR con­
stantly. )

Remark. Let us mention that by means of the proofs of Lemma 5.1 and
Theorem 5.2 the condition

h --+ 0,

is also sufficient for the validity of Theorem 5.2. The concept of maximal
functions, however, is more directly connected with the smoothness of f
resp. Vf and, for example, also works in case 0 < P < 1.
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